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Abstract. We discuss the theory of spin waves in non-degenerate ultra-cold gases, and compare various
methods which can be used to obtain appropriate kinetic equations. We then study non-hydrodynamic
situations, where the amplitude of spin waves is sufficiently large to bring the system far from local equi-
librium. The full position and momentum dependence of the distribution function must then be retained. In
the first part of the article, we compare two general methods which can be used to derive a kinetic equation
for a dilute gas of atoms (bosons or fermions) with two internal states (treated as a pseudo-spin 1/2). The
collisional methods are in the spirit of Boltzmann’s original derivation of his kinetic equation where, at
each point of space, the effects of all sorts of possible binary collisions are added. We discuss two different
versions of collisional methods, the Yvon-Snider approach and the S matrix approach. The second method
uses the notion of mean field, which modifies the drift term of the kinetic equation, in the line of the Landau
theory of transport in quantum liquids. For a dilute cold gas, it turns out that all these derivations lead to
the same drift terms in the transport equation, but differ in the precise expression of the collision integral
and in higher order gradient terms. In the second part of the article, the kinetic equation is applied to spin
waves (or internal conversion) in trapped ultra-cold gases. Numerical simulations are used to illustrate the
strongly non-hydrodynamic character of the spin waves recently observed with trapped 87Rb atoms. The
decay of the phenomenon, which takes place when the system relaxes back towards equilibrium, is also
discussed, with a short comment on decoherence. In two appendices we calculate the Wigner transform of
the interaction term in the S matrix method, to first order in gradients; Appendix A.1 treats the case of
spin-independent interactions, Appendix A.2 that of spin-dependent interactions.

PACS. 05.30.-d Quantum statistical mechanics – 51.10.+y Kinetic and transport theory of gases –
75.30.Ds Spin waves

1 Introduction

Recent experiments [1,2] have renewed the interest in spin
waves in dilute quantum gases, in conditions where they
had not been observed before. A first novelty is that these
waves were neither purely nuclear nor electronic, but in-
volved two hyperfine atomic levels where the nuclear and
electronic spin are coupled. This difference is actually mi-
nor: the exchange effects from which the waves originate
are unaffected by the precise nature of the levels — in
other words one can, without any loss of generality, assim-
ilate any pair of atomic states to up and down states of
a fictitious spin. The second, more important, difference
is that the waves were observed with very large ampli-
tudes, leading to an almost complete apparent segregation
of the atoms in each internal state, and involving situa-
tions where the gas is very far from local equilibrium; we
study such situations in the present article.

In degenerate liquids, the existence of spin waves has
been known for many years [3,4]. In dilute gases, which
are non-degenerate, it took about twenty more years [5,6]
to realize that they should also sustain similar waves, for
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both bosonic and fermionic systems. This came as a sur-
prise to some since, before, these waves had been mostly
associated with the Landau formalism for Fermi liquids,
and with the notion of “molecular field” resulting from
exchange and interactions with nearest neighbors. In a
liquid, a test particle remains trapped in a sort of local
cavity and interacts constantly with several neighbors, so
that the notion of mean field emerges naturally from the
averaging over the effect of several neighbors. By contrast,
in a gas, the motion of a particle is often described as free
flights along straight lines, interrupted by short collisional
processes, so that the physics involved is clearly very dif-
ferent. It nevertheless turns out that, when averaged over
all possible collisions at each point of space, the final re-
sult of the exchange interactions in a gas and a liquid are
very similar (see, for example, Ref. [7] for a general dis-
cussion). Soon after these theoretical predictions, exper-
imental observations demonstrated the existence of spin
waves in spin polarized hydrogen gas [8], 3He gas [9], and
dilute 3He–4He solutions [10].

The physical difference between gases and liquids
has its counterpart in the different theoretical ap-
proaches used to derive kinetic equations. Historically,
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the first derivation was that of Boltzmann, with his
Stosszahlansatz (or molecular chaos Ansatz): collisions
are considered as point processes (with no duration and
no spatial extent) taking place between particles which
are completely uncorrelated before collision. As a conse-
quence, one can add at each point of space the effect of
all possible binary collisions between uncorrelated parti-
cles, as if one was adding the effect of many “beam to
beam collision experiments” in atomic physics. This pro-
vides the famous Boltzmann equation, with a relatively
complicated collision term on the right hand side, while
the drift term on the left hand side corresponds merely
to a completely free flight of particles between collisions.
In the approach introduced later by Landau for the study
of degenerate Fermi liquids [11], quasi-particles are never
free, since their motion is constantly guided by a mean
field created by the neighbor particles. Therefore inter-
actions modify the drift term while, on the other hand,
the collision term is generally treated phenomenologically,
by a simple relaxation approximation. Both point of view
have their advantages. Boltzmann’s point of view does not
require the use of a pseudo-potential and therefore allows
a more microscopic treatment of collisions, for instance a
more precise inclusion of lateral collisions including their
full angular end energy dependence. On the other hand,
it does not encompass quantum degenerate systems, does
not introduce the powerful notion of quasi-particles, and
generally speaking remains limited to dilute interacting
gases.

The connection between the two points of view is pro-
vided by collisions in the forward direction. In two body
collision theory, it is well-known that wave interference in
the forward direction is responsible for particle absorp-
tion (optical theorem). In addition, more physics may be
involved in this forward interference effect: for spinless
particles, retardation effects are introduced (see for in-
stance [12]); for particles with spin, in addition, identical
spin rotation effects (ISRE) due to particle indistinguisha-
bility [6,13] also take place. In many-body transport the-
ory, both these effects have their equivalents. The cumu-
lated retardation effects during collisions give rise to an
average force, or equivalently to a scalar mean field (see
for instance [14] and references therein); in the kinetic
equation, this corresponds to terms which are quadratic
in the distribution function, as the collision term, but con-
tain gradients (spatial gradients of the density as well as
momentum gradients of the particle distribution); in other
words, one gets zero sound Landau type mean field terms
which are naturally grouped with the drift term on the
l.h.s. of the kinetic equation. As for the identical spin rota-
tion effects, they average to a spin molecular field which is
the equivalent of the molecular field considered by Silin [3]
and Leggett [4]; the ISRE is already present to zero order
gradient expansion, as opposed to the scalar retardation
terms [13,15], which explains why the dispersion relation
of spin waves is different from the usual sound wave dis-
persion. A detailed study of forward scattering in a binary
collision can therefore lead to a microscopic understanding
of the origin of the Landau mean field (lateral scattering

introduces collisional damping). From a practical point
of view, it remains true that the mean field treatment of
the drift term, necessarily associated with the use of a
pseudo-potential, is often more compact and elegant than
a detailed study of the collisional properties in the forward
direction; it is nevertheless interesting to check precisely
to what extent they are equivalent in various situations.

Our purpose in this article is twofold. First, for parti-
cles with spins, the equivalence in question has been ver-
ified in the literature only to zero order in the gradient
expansion, in other words only for the local terms appear-
ing in the kinetic equation. Here we wish to derive the
kinetic equation to first (non-local) order in the gradient
expansion. Moreover, we will consider the situation where
the scattering may depend on the relative spin orientations
(even if this dependence was relatively weak in the experi-
ments of the JILA group [1,2]). We will therefore examine
in detail the properties of collisional interference in the for-
ward direction in this more general case; the details of the
calculations are given in two appendices (gradient expan-
sion of the interaction term within the S-matrix collision
Ansatz). Second, we also wish to study situation where
the gas is far from local equilibrium. In fact, most of the
work on spin waves in the literature deals with hydrody-
namic situations where, at every point of space, the gas is
close to local equilibrium, so that a simple hydrodynamic
expression of the spin current can be used; of course, this
reduces the number of variables, but at the price of an
approximation which is not necessarily justified. In fact,
in the experiments in question, the gas sometimes evolves
very far from an hydrodynamic regime, which is not so
surprising since the spin waves have a large amplitude
and lead to an almost complete segregation of the two
spin species. For a study of spin waves in the collisionless
regime (mean-free-path large compared to characteristic
lengths), but still close to equilibrium (linear regime), see
reference [16].

2 Kinetic equation

We study an ensemble of identical atoms with two in-
ternal levels, obeying either Bose or Fermi statistics. As
mentioned in the introduction we can, without any loss
of generality, assimilate these two levels to two spin lev-
els, whatever their real physical origin is. For instance,
hyperfine atomic structure states, even in a situation of
intermediate magnetic decoupling, are possible; the only
important thing is that the quantum states describing the
internal variables should be orthogonal. We now derive a
kinetic equation for a dilute gas of such atoms.

2.1 Collisional methods; Yvon-Snider
and Lhuillier-Laloë equations

In classical statistical mechanics, Boltzmann’s intuitive
method for deriving a kinetic equation is based on the
study of individual collisions; one adds the effect of all pos-
sible binary collisions taking place at each point of space
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on the single particle distribution in phase-space f1(r,p).
Another point of view starts from the infinite hierarchy
of BBGKY equations and closes its first equation, which
relates f1 to the two particle distribution function f2, by
studying the evolution of f2 during a binary collision and
expressing it as some functional of f1 (see for instance
Refs. [17,18]).

The same lines can be followed in quantum mechan-
ics, but f1(r,p) has to be replaced by the reduced single-
particle density operator ρ̂1. Since we assume here that the
particles have two internal states, which we treat as spin
states, the single-particle density operator ρ̂1 acts in the
product space of orbital and spin variables of one particle.
The operatorial kinetic equation has the form:

dρ̂1

dt
+

1
i�

[
ρ̂1, Ĥ1

]
−
� d

dt

∣∣∣∣
coll

ρ̂1 (1)

where:

Ĥ1 =
p2

2m
1̂ + V̂ ext (2)

is the single-particle Hamiltonian, p the momentum of
the particle, m its mass, 1̂ the unity operator in spin space
and V̂ ext the operator describing the external forces acting
on the particle, which may be spin dependent. The r.h.s.
of equation (1) takes into account the effects of binary
interactions between the particles; it contains the result of
the collisional approximation mentioned above, and will
be discussed in more detail below. The equation is only
valid for a dilute gas (n−1/3 � a, where n is the number
density of the gas and a the scattering length) and on
time/length scales much greater than the duration of a
collision/scattering length.

The next step is to introduce the Wigner trans-
form [19,20] ρ̂W (r,p) of ρ̂1 with respect to orbital vari-
ables:

ρ̂W (r,p) ≡ (2π�)−3

∫
d3r′ eip·r′/�

〈
r − r′

2

∣∣∣∣ ρ̂1

∣∣∣∣r +
r′

2

〉
.

(3)
It is a classical function of position and momentum, but
still an operator — or a 2 × 2 matrix — in spin space.
In the following, we will treat the orbital degrees of free-
dom semi-classically, but not the spin degrees of freedom.
For the sake of simplicity, from now on we will drop the
index W , assuming that the dependence on r and p is suf-
ficient to signal a Wigner distribution. One then performs
a Wigner transform of equation (1), which involves tak-
ing the Wigner transform of products of operators. This
is possible by using Groenewold’s formula [20,21], which
provides the result as a infinite series of gradient expan-
sion: the first term is merely the product of the Wigner
transforms of the two operators, followed by product of
gradients with respect to r and p, followed by higher or-
der gradients, etc. The Wigner transform of the l.h.s. of
equation (1) then gives:

∂tρ̂(r,p) +
p
m

· ∇rρ̂(r,p) +
1
i�

[
ρ̂(r,p), V̂ ext(r)

]
−

− 1
2

[
∇pρ̂(r,p), ·∇rV̂

ext(r)
]
+

+ ... (4)

The first two terms are exact, whereas the next two are
only the first orders terms in a gradient expansion involv-
ing the external potential. The commutator is obtained to
zero order of the gradient expansion while the anticommu-
tator occurs only to first order, followed by higher order
terms symbolized by the dots. The anticommutator cor-
responds to the classical force term (describing the effect
of a trap, for example), which we wish to retain in our
calculations; as a consequence, we have to include up to
first order gradient expansion in the Wigner transform of
the r.h.s. of equation (1).

The non-trivial part in the derivation for a kinetic
equation begins when one gives a precise expression to
the formal r.h.s. of equation (1). This is the subject of
many studies in the literature and even the subject of
books; here, we limit ourselves to a simplified discussion
of two different approaches which are appropriate for the
study of spin waves. We consider only collisions taking
place in elastic channels, where the number of atoms in
each internal spin state is conserved, and begin with some
simple considerations on elementary collision theory. For
each channel, at very low temperatures, collisions occur
in the extreme quantum regime where the typical s-wave
scattering length a is small compared to the de Broglie
thermal wavelength λT . In this case, collisions are well
described by the isotropic s-wave, and the T matrix can
be approximated by:

Tk(k̂, k̂′) = − �
2

2π2m
fk(θ) =

�
2

2π2m
(a− ika2 + ...) (5)

(terms of order a2 should be retained in order to satisfy
explicitly the unitarity of the S-matrix in the optical theo-
rem); in this equation,m is the mass of the particles, fk(θ)
the scattering amplitude which, for s-wave scattering, is
independent of the polar angle θ, and k the collision wave
vector.

A first obvious remark is that the intensity of the
spherical scattered wave is proportional to the square of a,
while interference effects in the forward direction between
the incoming plane wave and the spherical scattered wave
are proportional to a itself. Generally speaking, the rel-
ative magnitude of forward and lateral scattering effects
is of order λT /a, which is large at low energies. This is
why, here, we concentrate on forward scattering effects
and their relation to mean field corrections to the drift
terms. Another remark is that, because waves interfere
only if they are in phase, phases and i factors are impor-
tant here. It turns out that, in quantum mechanics as well
as in optics [22,23], the summation over many scatterers
in the forward direction introduces an additional i factor
(which is actually the origin of the i factor in the optical
theorem). Hence, in every scattering channel, equation (5)
shows that no first order a interference effect occurs in the
forward direction, the first contribution arising from the
second term in ika2; to first order in a, only the phase
of the forward wave is changed, not its intensity. But, if
several scattering channels are open, the situation is dif-
ferent, because these different phase shifts in the forward
scattered waves can introduce spin rotation. Actually,



60 The European Physical Journal D

this is precisely the origin of the first order identical spin
rotation effect in the forward direction [6,13].

2.1.1 Spin-independent interactions

We now briefly summarize two approaches that have been
developed in the context of particles with spin: the Yvon-
Snider approximation, which emphasizes more the rela-
tion to the BBGKY hierarchy, and closes the infinite set of
equations with an approximation suitable for a binary col-
lision; the Lhuillier-Laloë (or S matrix) approach, which
is closer to the initial approach of Boltzmann and makes
use of the S collision matrix. We begin with the simplest
case, when the interactions are independent of spin.

Yvon-Snider

An interesting method is that originally proposed by
Yvon [24], then independently by Snider [25]; it pro-
vides a result which, in the literature, is often called the
Waldmann-Snider equation; the main idea is to express
the collision term as the trace over a collision partner (par-
ticle 2) of a commutator containing the binary interaction
potential V12 and a product of single particle operators
modified by the unitary transformation associated with
the Møller collision operator Ω ≡ Ω(+):

d
dt

∣∣∣∣
coll

ρ̂1(1) = (i�)−1

× Tr2
{[
V12 , Ω ρ̂1(1)ρ̂1(2) Ω†]

−
}
. (6)

This equation is valid for dilute gases of distinguishable
particles; for non-degenerate gases (nλ3

T � 1, where λT

is the thermal wavelength of the particles) of bosons or
fermions, it generalizes into:

d
dt

∣∣∣∣
coll

ρ̂1(1) = (i�)−1

× Tr2

{
1̂ + εP̂ex.√

2

[
V12, Ω ρ̂1(1)ρ̂1(2)Ω†]

−
1̂ + εP̂ex.√

2

}

(7)

where P̂ex. is the exchange operator between particles 1
and 2, and where:

ε = 1 for bosons, ε = −1 for fermions. (8)

Wigner transforms can then be applied to these expres-
sions to complete the derivation of the closed kinetic
equation for ρ̂(r,p). For instance, expanding (6) in a
Groenewold gradient expansion of the products provides,
to zero order in gradients, the straightforward Boltzmann
expression for the collision term:

d
dt

∣∣∣∣
coll

ρ̂(r1,p1) = −
∫

d3q
q

m

[
σT (k) ρ̂(r1,p1) f(r1,p2)

−
∫

d2k̂′ σk(θ) ρ̂(r1,p′
1) f(r1,p′

2)
]

(9)

where f(r,p) is the spin trace of ρ̂(r,p):

f(r,p) = TrS {ρ̂(r,p)} (10)

and where k̂ is the unit vector in the direction of k and θ
the angle between k and k′. Here we use the usual notation
in Boltzmann theory:

q = 2�k p2 = p1 − q

p′
1 = p− (q/2) + �kk̂′ p′

2 = p − (q/2) − �kk̂′ (11)

as well as the definition of the differential and total cross-
sections:

σk(θ) = (4π4m2/�4) |T (k,k′)|2 ; σT (k) =
∫

d2k̂′ σk(θ).

(12)
Higher order terms will introduce scalar mean field terms,
which we do not write here explicitly for concision; they
can be found in the Appendix of reference [14].

Now, if we introduce spin and statistics, we have to
use (7) instead of (6). To zero order in gradients, this
introduces the additional exchange terms to the right hand
side of (9):

− ε

2

∫
d3q

q

m

{
iτex.

fwd. (k) [ρ̂(r1,p1), ρ̂(r1,p2)]−

−
∫

d2k̂′ iτex.
k (θ) [ρ̂(r1,p′

1), ρ̂(r1,p′
2)]−

+
∫

d2k̂′ σex.
k (θ)

(
[ρ̂(r1,p1), ρ̂(r1,p2)]+

− [ρ̂(r1,p′
1), ρ̂(r1,p′

2)]+
)}

(13)

where the “generalized cross-sections” are defined by:

τex.
fwd.(k) = (−8π3m/�2k) Re {T (−k,k)} (14)

and:

σex.
k (θ)−iτex.

k (θ) = (4π4m2/�4) T (−k,k′) T ∗(k,k′). (15)

In (13), the two terms in the first two lines correspond
respectively to the ISRE in the forward and lateral di-
rection; the two terms in the third line correspond to ex-
change effects changing the values of the total and lateral
cross-sections, as discussed in more detail in [13]. For sim-
plicity, we do not write the first order gradient terms, but
more details on the limit of validity of the Yvon-Snider
equation and of the various terms which it contains can
be found in [26], [15] or [14] (in particular the Appendix
of this last reference). Inserting the low energy limit (5) is
trivial; we write the explicit results in the next section.

Lhuillier-Laloë

Another point of view, more directly in the spirit of the
initial Ansatz of Boltzmann, was employed by Lhuillier
and Laloë (LL) [13]; it is based on the use of the S col-
lision matrix. When collisions are treated only as “closed
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processes” (one ignores particles “in the middle of a col-
lision”), it is indeed possible to use the S matrix to re-
late exactly the single particle operators after and before
collision. One gets the following expression for the single
particle density operator after collision ρ̂′1 as a function of
the same operator ρ̂1 before collision:

ρ̂′1(1) = Tr2

{
1̂ + εP̂ex.√

2
Ŝ ρ̂1(1) ρ̂1(2) Ŝ† 1̂ + εP̂ex.√

2

}

(16)
(the trace acts over orbital and spin variables of the colli-
sion partner 2) where the S matrix is related to the colli-
sion T matrix by:

〈1 : kf ; 2 : −kf | Ŝ | 1 : ki; 2 : −ki〉 =

δ(kf − ki) − i
πm

�2ki
δ(kf − ki) Tki (17)

(�k is the relative momentum of the two particles). One
then approximates the rate of change of ρ̂1 by the variation
(ρ̂′1 − ρ̂1)/∆t during a short time interval1 ∆t, which is
however much longer than the duration of a collision, to
obtain:

d
dt

∣∣∣∣
coll

ρ̂1(1) � 1
∆t

Tr2

{
1̂ + εP̂ex.√

2

[
Ŝ ρ̂1(1) ρ̂1(2) Ŝ†

−ρ̂1(1) ρ̂1(2)
]
1̂ + εP̂ex.√

2

}
. (18)

One should note that the S matrix Ansatz of equation (18)
is only valid for a non-degenerate gas where:

Tr2

{
1̂ + εP̂ex.√

2
ρ̂1(1) ρ̂1(2)

1̂ + εP̂ex.√
2

}
=

ρ̂1(1) + ερ̂1(1)2 � ρ̂1(1). (19)

As above, the kinetic equation is obtained from equa-
tion (18) by performing a Wigner transform followed by
a gradient expansion. In Appendix A.1 we first calculate
the zero order gradient expansion, which is given by equa-
tion (76); it is easy to see that it coincides exactly with the
sum of (9) and (13), which shows that the Yvon-Snider
and S matrix approximations are exactly equivalent to
this order. The first order gradient terms are also given in
the same Appendix; here, we only give their low energy
limit by using equation (5), which provides the following
kinetic equation:

∂tρ̂(r1,p1) +
p1

m
· ∇rρ̂(r1,p1)

+
1
i�

[
ρ̂(r1,p1), V̂ ext(r1) + ε gn̂(r1)

]
−

− 1
2

[
∇pρ̂(r1,p1), ·∇r

(
V̂ ext(r1) + gn(r1)1̂ + ε gn̂(r1)

)]
+

= Icoll[ρ̂] (20)
1 We will see that ∆t is a time which emerges naturally from

the calculation through the occurrence of square of delta func-
tions of the energy (see Appendix A.1).

where g ≡ 4π�
2a/m and n̂(r1) is the local density operator

integrated over velocities:

n̂(r) ≡
∫

d3p ρ̂(r,p). (21)

In this equation, as usual, forward scattering terms lin-
ear in the coupling constant g ∝ a have been included in
the l.h.s. The local term of the collision integral, which
regroups terms proportional to a2, is given by:

Icoll[ρ̂] = −
∫

d3q
q

m

∫
d2k̂′ a2

(
ρ̂(r1,p1)f(r1,p2)

− ρ̂(r1,p′
1)f(r1,p′

2) +
ε

2
[ρ̂(r1,p1), ρ̂(r1,p2)]+

− ε

2
[ρ̂(r1,p′

1), ρ̂(r1,p′
2)]+

)
(22)

where p2, p′
1 and p′

2 are defined in (11). In addition to
the anticommutator in the l.h.s. of (20), obtained to first
order in the gradient expansion, we recover exactly the
low-energy limit of the LL equation [13] with, in the l.h.s.,
the ISRE in the forward direction (the ISRE in the lateral
directions disappears in the low energy limit); the second
line of (22) provides the statistical terms introduced by
particle indistinguishability into the total and differential
collision cross-section.

2.1.2 Spin-dependent interactions

We now study the gas with spin-dependent interactions
and, for a moment, consider the particles as distinguish-
able. In the limit of slow elastic collisions, we need only
consider four s-wave scattering lengths: a11, a22, a

(d)
12 and

a
(t)
12 . The two first describe collisions processes between

particles that are in the same internal state; when they are
in orthogonal internal states, two different processes oc-
cur for distinguishable particles: a direct collision process
without energy transfer described by a

(d)
12 , and a trans-

fer collision process described by a(t)
12 — similar processes

occur in the theory of spin exchange collisions [27]. The
T matrix is now a 4 × 4 matrix in spin space; to lowest
order in the scattering lengths, its matrix elements with
distinguishable particles are given by:

〈 1 : α ; 2 : β| T̂k | 1 : γ ; 2 : δ〉 =

�
2

2π2m




ã11(k) 0 0 0
0 ã22(k) 0 0

0 0 ã
(d)
12 (k) ã(t)

12 (k)

0 0 ã
(t)
12 (k) ã(d)

12 (k)


 (23)

where α, β, γ and δ are the internal state indexes taking
values {1, 2} and where:

ãαβ(k) = aαβ [1 − ikaαβ] . (24)

Equation (23) replaces (5) when the interactions depend
on spin.
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Kinetic equation

The derivation of the kinetic equation then proceeds along
the same lines as in the previous section: we use (16)
again to symmetrize the density operator and take quan-
tum statistics into account, but now insert (23) instead
of (17) in it, calculate the partial trace, and obtain an
interaction term for the single particle density operator;
we then Wigner transform the result and use a gradient
expansion limited to first order. This calculation is sim-
ilar to that of Appendix A.1 for spin-independent inter-
actions, but of course more complicated; it provides more
general expressions for the mean field terms and the col-
lision integrals. For conciseness, we limit ourselves to the
mean field terms, which will actually be sufficient for our
calculations below. In this particular case, the terms can
actually be obtained more conveniently by an operatorial
method, different from that of Appendix A.1, as shown in
Appendix A.2. We only reproduce the final kinetic equa-
tion:

∂tρ̂(r,p) +
p
m

· ∇rρ̂(r,p) +
1
i�

[
ρ̂(r,p), Û(r)

]
−

− 1
2

[
∇pρ̂(r,p), ·∇rÛ(r)

]
+

= Icoll[ρ̂] (25)

where the effective single-particle potential Û is:

Û = V̂ ext +
(

(1 + ε)g22n2 + g12n1 εg12n21

εg12n12 (1 + ε)g11n1 + g12n2

)

(26)
with gαβ ≡ 4π�

2aαβ/m, where a12 ≡ a
(d)
12 + εa

(t)
12 ; it turns

out that only this combination of the direct and transfer
coupling constants enters the calculation (for more details,
see Appendix A.2).

This kinetic equation resembles the Landau-Silin equa-
tion [3,28] for a normal Fermi liquid in a magnetic field.
The second term in the l.h.s. of (25) is the usual free drift
term; the anticommutator is a force term including both
the effect of an external potential and of the mean field;
the commutator is a spin precession term containing ef-
fective magnetic fields from different origins (differential
Zeeman effect, spin mean field, etc.).

Evolution of the density and spin density in phase space

The structure of the distribution function, which is still a
matrix in the space of internal variables, is more explicit
if we decompose ρ̂ and Û in the basis formed by Pauli
matrices σ̂ and the unit 2 × 2 matrix:

ρ̂(r,p, t) =
1
2
(
f(r,p, t)1̂ + M(r,p, t) · σ̂

)

Û(r, t) = U0(r, t)1̂ + U(r, t) · σ̂. (27)

When written in terms of the phase-space density f and
spin density M, equation (25) becomes:

∂tf +
p
m

· ∇rf −∇rU0 · ∇pf

−∇rU · ∇pM = I
(f)
coll[f,M]

∂tM +
p
m

· ∇rM −∇rU0 · ∇pM

−∇rU · ∇pf − 2U
�

× M = I
(M)
coll [f,M]. (28)

In these equations, U0 plays the role of the overall trapping
potential and U is the local effective magnetic field around
which the spins rotate. The effective trapping potential U0

is given by:

U0(r, t) =
V ext

2 + V ext
1

2
+
[
1 + ε

2
(g22 + g11) + g12

]
n

2

+
1 + ε

2
(g22 − g11)

m‖
2

(29)

and the effective magnetic field is:

U(r, t) =
�Ω(x, t)

2
e‖ + ε

g12m(x, t)
2

�Ω(r, t) = V ext
2 − V ext

1 +
1 + ε

2
[
(g22 − g11)n

+ (g22 + g11 − 2g12)m‖
]

(30)

where the local density and spin polarization density are
defined as:

n = n2 + n1; m‖ = n2 − n1

m⊥,1 = n21 + n12; m⊥,2 = i(n21 − n12). (31)

The basis in spin space is denoted by {e⊥,1; e⊥,2; e‖}.
The two first vectors define the transverse plane, the last
defines the longitudinal direction.

The collision integral in (25), i.e. the equivalent of
equation (22) when the interactions are spin-dependent, is
not written explicitly to simplify the calculations, and be-
cause we will mostly study experimental situations where
lateral collisions do not play a dominant role, we limit
ourselves to a simple relaxation time approximation:

I
(f)
coll � −f(r,p, t) − f eq(r,p, t)

τ
;

I
(M)
coll � −M(r,p, t) − Meq(r,p, t)

τ
(32)

where f eq (resp. Meq) is the local equilibrium (spin) den-
sity in phase-space, and τ is a relaxation time. Actually,
one could allow for different relaxation times for f , M‖
and M⊥. Nevertheless, in the case of a non-degenerate gas
with spin-independent interactions, it is known (Ref. [29]
and references therein) that these relaxation times are
equal; below we consider a non-degenerate gas of 87Rb,
for which the three scattering lengths a11, a22 and a12 are
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very close [1], so that in practice we will we only need a
single relaxation time τ given approximately by:

τ � 1
4πa2

12 n

√
m

kBT
· (33)

Finally, the kinetic equations we will use below to discuss
spin waves are:

∂tf +
p
m

· ∇rf −∇rU0 · ∇pf

−∇rU · ∇pM � −f − f eq

τ

∂tM +
p
m

· ∇rM −∇rU0 · ∇pM

−∇rU · ∇pf − 2U
�

× M � −M − Meq

τ
· (34)

The main differences with the LL kinetic equation derived
in reference [13] are that the full mean field is included (not
just the spin mean field), and that the equation is obtained
for general spin-dependent interactions. Nevertheless, our
result is also less general, since the collisions are assumed
to occur only in the s-wave channel and that the collision
integral is treated at the relaxation time approximation
level (if necessary, these two restrictions could be lifted
without any special difficulty).

2.2 Mean field

Another way to derive the modified drift term is to directly
use a mean field approximation within field theory. The
following second quantized Hamiltonian density is used to
describe a trapped ultra-cold gas of bosons or fermions:

H = H1 + Hint

=
∑

α=1,2

(
�

2

2m
∇ψ†

α(r) · ∇ψα(r) + V ext
α (r)ψ†

α(r)ψα(r)
)

+
1
2

∑
α,β

gαβψ
†
α(r)ψ†

β(r)ψβ(r)ψα(r). (35)

The annihilation and creation field operators of a particle
in the internal state α are ψα(r) and ψ†

α(r). They have
bosonic or fermionic equal-time commutation or anticom-
mutation relations. The interactions only depend on the
three coupling constants g11, g12 and g22; the real poten-
tial V -matrix elements have been replaced by the appro-
priate T -matrix elements at low-energy, according to an
usual procedure in the study of cold gases (Fermi pseudo-
potential method [30], or V → T renormalization proce-
dure in Ref. [28]).

We wish to obtain the time evolution of the single-
particle density matrix ραβ(r, r′, t) = 〈ψ†

α(r′, t)ψβ(r, t)〉,
where 〈. . .〉 denotes the expectation value with respect to
the time-dependent N -body density operator of the sys-
tem. To this end we write down the Heisenberg equation
of motion for ψ†

α(r′, t)ψβ(r, t) using the Hamiltonian (35).

The non-interacting part of the Hamiltonian density H1

gives the single-particle Liouville-von Neumann equation:

i�∂tραβ(r, r′, t) = − �
2

2m
(
∇2

r −∇2
r′
)
ραβ(r, r′, t)

+
(
V ext

α (r) − V ext
β (r′)

)
ραβ(r, r′, t). (36)

The interacting part Hint couples the single-particle den-
sity matrix with the expectation value of the product of
four field operators (two-particle density matrix). If we
are only interested in time scales large compared to the
duration of a collision, we can decompose the averages
of such products into averages of products of two oper-
ators2. In the context of the equation of motion for the
single-particle density matrix, this approximation is often
called the random phase approximation (RPA) [31]. The
interacting part of the equation of motion then becomes:
∑

δ=1,2

V mf
αδ (r, t)ρδβ(r, r′, t) −

∑
δ=1,2

ραδ(r, r′, t)V mf
δβ (r′, t)

(37)
where the mean field potential 2 × 2 matrix is given by:

V mf
αβ (r) = δα,β

∑
γ=1,2

gαγ〈ψ†
γ(r)ψγ(r)〉 + εgαβ〈ψ†

α(r)ψβ(r)〉

(38)
which contains a direct term and an exchange mean field
term, proportional to ε. Within this approximation, each
particle evolves under the influence of an effective single-
particle potential Û(r, t), which is the sum of the ex-
ternal potential V̂ ext(r) and the time-dependent mean
field V̂ mf(r, t).

In order to compare this result with that of the pre-
ceding section, we note that nα(r, t) = 〈ψ†

α(r, t)ψα(r, t)〉
is the average density of atoms in internal state α = 1, 2
and the off-diagonal elements n12(r, t) = n∗

21(r, t) =
〈ψ†

1(r, t)ψ2(r, t)〉 are the coherences between the internal
states, so that the effective potential Û reproduces exactly
the one obtained in the preceding section, equation (26).
We therefore arrive at the following operatorial kinetic
equation:

dρ̂1

dt
+

1
i�

[
ρ̂1, Ĥ1 + V̂ mf

]
−

= 0 (39)

which is the quantum equivalent of the Vlasov equation
(see Ref. [18] for example); in this equation, Ĥ1 is the sin-
gle particle Hamiltonian defined in (2) and V̂ mf is defined
by (38). Obviously, if we Wigner transform this opera-
torial equation, we will obtain a kinetic equation that is
equivalent to (25), but without the collision integral. The
effect of lateral collisions can then be treated phenomeno-
logically by adding by hand a term corresponding to a
relaxation time approximation, as usual [31]; then equa-
tions (34) are recovered and the mean field treatment of

2 This result can be obtained for instance from the Wick
theorem. It is valid because the gas is not Bose condensed;
otherwise, the mean field could not be obtained in that way,
due to the absence of the exchange term.
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interactions becomes exactly equivalent to these simplified
equations.

2.3 Discussion

We have used three different methods to derive a kinetic
equation for a gas of atoms with two internal levels: the
S matrix (or LL) Ansatz, the Yvon-Snider Ansatz (YS)
and the mean field approximation; we now summarize a
comparison between the results.

To zero order in the gradients, LL and YS give exactly
the same equation, containing a Boltzmann-type collision
integral and a spin mean field. As for the mean field ap-
proximation, it provides only the spin mean field, obtained
in the limit of low-energy collisions because of the use of
the pseudopotential; this limit is in full agreement with
the results of the two other methods. We note in pass-
ing that this spin mean field occurs for a non-condensed
Bose gas, but not in a Bose-Einstein condensate (BEC)
at very low temperature, because the exchange term is
absent when a single quantum state is involved. In this
case, there is however a different mechanism for creating
spin waves, the so-called “quantum torque” of purely ki-
netic origin [32]; it arises naturally because, in quantum
mechanics, any gradient of the phase corresponds to a ki-
netic energy for each component which, in turn, affects
the evolution of the relative phase and therefore of the
transverse spin orientation.

To first order in the gradients and for forward scat-
tering, LL, YS and the mean field approximation all give
the same scalar mean field term (zero sound), again in the
limit of low-energy collisions for the third method. We
have checked that the complete expression of the LL and
YS first order gradient terms coincide exactly for forward
scattering, but not for lateral scattering; whether or not
the two methods are completely equivalent to this order
is left as an open question; for more details see [33].

In a non-degenerate dilute gas, the spin mean field
generally dominates over the scalar mean field, because
it appears to lower order in the gradient expansion; it is
therefore not surprising that zero sound type collective
modes should not propagate as easily as spin waves in
dilute non-degenerate gases.

To what extent collisional methods and mean field ap-
proximations are equivalent is not a trivial question. Gen-
erally speaking, mean field theory is assumed to be valid
for systems with either long range interactions (Vlasov’s
equation for a plasma [18]) or in strongly interacting
degenerate systems described in terms of quasi-particles
(Landau’s equation for a Fermi liquid [3,11,28]); for a
dilute gas, neither of these conditions is met. Our con-
clusion is nevertheless that the equivalence is perfect to
first order in the scattering length a but does not hold
to higher orders in a. We finally remark that, when de-
scribing a non-degenerate dilute atomic gas in terms of
quasi-particles (see the work of Bashkin [16], for exam-
ple), a quasi-particle is just a particle whose kinetic energy
p2/2m is shifted by a local mean field term, so that the

kinetic drift term of the quasi-particle transport equation
is left unchanged.

3 Spin oscillations and internal conversion

Our purpose now is to use the kinetic equation obtained
in the preceding section to discuss spin waves in ultra-
cold trapped atomic gases. We first briefly review a re-
cent experiment realized at JILA [1] and the theoreti-
cal work stimulated by it [34–38]. We then discuss the
non-hydrodynamic character of the observed spin waves,
which allows a comparison between the different theoreti-
cal treatments. Finally, we describe the decay of the spin
waves and discuss the relevance of decoherence.

3.1 The JILA experiment

In a recent experiment performed at JILA, Lewandowsky
et al. have studied bosonic 87Rb atoms with two hyper-
fine states of interest (denoted by 1 and 2), confined in an
axially symmetric magnetic trap elongated along the Ox
direction. Their experiment is described in [1]; the tem-
perature T of the gas in this experiment is about twice
the critical temperature for Bose-Einstein condensation,
so that the gas is not strongly degenerate and can be
treated reasonably well as a Boltzmann gas; however, since
the de Broglie thermal wavelength is much larger than the
average scattering length, collisions occur in the full quan-
tum regime. Initially, the gas is at equilibrium with only
state 1 populated. A π/2 radio frequency pulse is then
applied, which suddenly puts all the atoms into the same
coherent superposition of states 1 and 2. The subsequent
evolution of the system along the axial direction is then
monitored by measuring optically the local densities n1

and n2 of atoms in each internal state. Experimentally,
one observes that the system “segregates”: after about
100 ms, atoms in state 1 are mostly found away from the
center of the trap, while atoms in state 2 move towards
the center, the total density n = n1 + n2 remaining prac-
tically unchanged. After about 200 ms, the local densities
of each species return to equilibrium.

In reference [35], this phenomenon was explained in
terms of an internal conversion resulting from the identi-
cal spin rotation effect (ISRE), which is at the origin of
the spin mean field; similar considerations were almost si-
multaneously provided by two other groups [34,36]. Quali-
tatively, this spin oscillation can be understood as follows:

(i) the field gradient creates an inhomogeneous spin pre-
cession, so that the gas develops a gradient of trans-
verse spin polarization;

(ii) the thermal motion of the atoms then creates correla-
tions between transverse spin and velocity; therefore,
a particle moving with a given velocity at point x
gets a spin polarization which is not parallel to the
average local polarization;

(iii) the ISRE then makes its spin polarization leave the
transverse plane and get a longitudinal component, in
a direction which depends on the sign of the velocity;
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(iv) this is equivalent to a velocity dependent internal
conversion which, at some later time, results in an
efficient spatial separation of atoms in the two inter-
nal states.

To study this phenomenon quantitatively, we derive
from (34) an effective one-dimensional kinetic equation in
terms of the local density in phase space f(x, p, t) and spin
density M(x, p, t), by assuming that radial equilibrium
is quickly established (the radial trap frequency ωrad/2π
is much larger than the axial trap frequency ωax/2π).
Integrating (34) over radial coordinates y, z and mo-
menta py, pz provides the following equations:

∂tf +
p

m
∂xf − ∂xU0 ∂pf − ∂xU · ∂pM � −(f − f eq)/τ

(40)

∂tM +
p

m
∂xM − ∂xU0∂pM − ∂xU∂pf − 2U

�
× M

� −(M − Meq)/τ
(41)

(every quantity depending initially on three-dimensional
coordinates r and momenta p has been integrated over
radial coordinates and momenta, so that it now depends
only on the coordinate x and the momentum p ≡ px).
In the process of radial averaging, the coupling constants
gαβ are renormalized by a factor 1/2, as discussed by
Levitov [34]. The three-dimensional effective trapping po-
tential (29) therefore becomes:

U0(x, t) =
V ext

2 + V ext
1

2
+
[
1 + ε

2
(g22 + g11) + g12

]
n

4

+
1 + ε

2
(g22 − g11)

m‖
4

(42)

and the three-dimensional effective magnetic field (30) is
changed into:

U(x, t) =
�Ω(x, t)

2
e‖ + ε

g12m(x, t)
4

(43)

with:

�Ω(x, t) = V ext
2 − V ext

1 +
1 + ε

2

[
(g22 − g11)

n

2

+(g22 + g11 − 2g12)
m‖
2

]

where e‖ is the unit vector in the longitudinal direction in
spin space.

A few simplifying assumptions are appropriate for the
experimental conditions of reference [1]. The confining en-
ergy (V ext

2 + V ext
1 )/2 is of order kBT � 13 kHz×h which

is much larger than the mean field interaction energy
gn(0) � 140 Hz×h. This allows us to keep only the confin-
ing energy of the harmonic trap in the effective trapping
potential U0:

U0(x) �
V ext

1 (x) + V ext
2 (x)

2
=

1
2
mω2

axx
2. (44)

The differential trapping energy V ext
2 −V ext

1 ∼ 10 Hz×h is
even weaker than the mean field interaction energy. This
ensures that the force terms ∂xU · ∂p(f or M) appearing
in equations (40, 41) are negligible. On the contrary, when
the local effective magnetic field U does not appear under
a spatial gradient, as in the term 2U×M/�, it can not be
neglected. This effective magnetic field U is made of two
terms (see Eq. (43)): one is an effective external magnetic
field �Ω/2; the other is an exchange magnetic field or spin
mean field g12m/4 which results from the ISRE. The effec-
tive external magnetic field is the sum of the contributions
of a differential Zeeman and of a differential mean field:

�Ω(x) = � Ω(x)e‖ � [V ext
2 (x) − V ext

1 (x)

+ (g22 − g11)n(x)/2]e‖ (45)

where, following reference [1], we have assumed that
2g12 � g11 + g22 for simplicity. The average value over
the sample of the effective external magnetic field can be
removed by going to a uniformly rotating frame (Larmor
frame). For the numerical simulations, we need to know
the x dependence of this effective magnetic field. As the
profile n(x) will be shown to be a Gaussian (as for a non-
interacting non-degenerate gas) which does not vary in
time, we model the experimentally measured effective ex-
ternal magnetic field by:

Ω(x) = −δΩ exp−(mω2
axx

2/2kBT )e‖ (46)

where the parameter δΩ is the variation of Ω(x) between
the center and the edge of the cloud.

Taking into account all approximations mentioned
above, we finally arrive at equations:

∂tf +
p

m
∂xf −mω2

axx∂pf � −(f − f eq)/τ (47)

∂tM +
p

m
∂xM −mω2

axx∂pM −
(
Ω +

g12m
2�

)
× M

� −(M − Meq)/τ. (48)

The initial equilibrium Maxwell-Boltzmann distribution
f(x, p) solves the kinetic equation (47), so that the dy-
namics after the π/2 pulse can be expressed in terms of
M only. In addition, the density n(x) is obtained by inte-
grating the equilibrium Maxwell-Boltzmann distribution
over momentum p, which shows that it is time indepen-
dent; from now on, we will only consider equation (48).
The spin distribution immediately after the π/2 pulse is
assumed to be:

M(x, p, t = 0) = f(x, p)e⊥,1. (49)

Equation (48) can be solved numerically with values of the
parameters taken from reference [1]: the trap frequencies
are ωax/2π = 7 Hz and ωrad/2π = 230 Hz; the average
time between collisions is τ ∼ 10 ms; the temperature
is T � 0.6 µK; the density at the center of the trap is
n(0) = 1.8 × 1013 cm−3; δΩ/2π is typically ∼ 12 Hz, and
the scattering lengths are a11 = 100.9a0, a22 = 95.6a0

and a12 = 98.2a0 where a0 is the Bohr radius. The solu-
tion at the center of trap is plotted in Figure 1; it shows
very good agreement with the experimental observations,
without any adjustable parameter.
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Fig. 1. Time evolution of the spin polarization m at the center
of the trap (x = 0) when δΩ/2π = 12 Hz.

3.2 Large, non-hydrodynamic, spin waves

Ordinary spin waves in non-degenerate gases usually occur
either in the hydrodynamic regime or/and in a regime of
small amplitudes [8–10]. One can then assume a small de-
parture of the spin distribution (from either local or global
equilibrium); this is similar to the first order Chapman-
Enskog gradient expansion, which leads to the Navier-
Stokes equations (see for instance [30]). The result is the
well-known Leggett equations [4], transposed from degen-
erate Fermi liquids to dilute non-degenerate gases [6]:

∂tm + ∂xj = Ω × m

∂tj− (Ω +
g12m
2�

) × j +
kBT

m
∂xm + ω2

axxm � − j
τ

(50)

where the spin current along Ox is defined by:

j(x, t) ≡
∫

dp
p

m
M(x, p, t). (51)

The momentum dependence has disappeared from these
equations, which contain only position variables. These
equations can describe spin waves, not only in the hy-
drodynamic regime, but also in the collisionless regime
as, for example, in liquid 3He (Silin spin waves [39]) or
in H↓ gas [40]. For a discussion of the hydrodynamic-like
description of spin waves in the collisionless regime of non-
degenerate dilute gases, see references [16,41].

The spin waves observed at JILA were of large am-
plitude and occurred in the intermediate regime between
hydrodynamic and collisionless, where ωaxτ ∼ 1, so that
there is no a priori reason to believe in the validity of the
Leggett equations; we therefore need to resort to a numer-
ical solution of the kinetic equation in terms of both posi-
tion and momentum variables. Figure 2 shows the results
of this calculation, and the spin density distribution (lon-
gitudinal and transverse) in p-space for different times. For
comparison, the local equilibrium spin distribution is also
plotted (dashed line); we see that the spin distribution in
p-space can indeed get very distorted, which illustrates
a strongly non-hydrodynamic situation. For very short

times, t � 40 ms, the transverse and longitudinal spin dis-
tributions are still close to local equilibrium (M eq

|| = 0), so
that the Leggett equations are valid. For t � 40 ms, this
is no longer true, so that one would lose a significant part
of the physics by not retaining the full momentum depen-
dence of the distribution. In other words, studying the two
first moments of the distribution (m and j) is not equiv-
alent to studying the full distribution M(p). What actu-
ally takes place is a phenomenon analogous to a density
“shock wave” rather than a “sound wave”. Eventually, for
t � 160 ms (end of the “segregation”), since equilibrium is
almost reached, the Leggett equations become valid again.

The initial part of the internal conversion (or state
separation) can be treated analytically in several approx-
imations, allowing for comparison between different ap-
proaches such as those of references [34–36]. In refer-
ence [35], we solved the kinetic equation analytically, for
times t � τ , by expanding in Taylor series in time and
obtained:
m||(x, t)
n(x)

=
g12n(x)

2�

[
kBT

m
Ω′′(x) − 2ω2

axxΩ
′(x)

]
t4

4!
(52)

whereΩ′ andΩ′′ are the first and second spatial derivative
of Ω(x). This formula predicts an initial quartic in t be-
havior, which correctly reproduces the numerical results;
each power of t corresponds to one of the four physical
processes (i) to (iv) described in Section 3.1.

Another approach to calculate the short time behavior
is that used by Williams et al. [36]. They use the Leggett
equations which are valid for t � τ because the spin dis-
tribution is at equilibrium at t = 0. Solving the Leggett
equations in the small time limit, where −j/τ is negligible,
they recover (52).

A third approach is to consider, following Oktel and
Levitov [34], the Leggett equations in the hydrodynamic
regime. The approximation consists in assuming that the
spin current remains close to its stationary value, which al-
lows to neglect the term ∂tj in equation (50). Using the re-
sulting equations, we obtain a different behavior for small
times:
m||(x, t)
n(x)

∼ g12n(x)
2�

[
kBT

m
Ω′′(x) − 2ω2

axxΩ
′(x)

]
(τt)2

4!
(53)

(the effect of the hydrodynamic approximation is to
replace t2 by tτ). The t4 and t2 results are plotted in
Figure 3; we see that times smaller than a time between
collisions τ can not be dealt with in this approach. Never-
theless, after each atom has made one collision on average,
the spin current is close to its stationary value and the hy-
drodynamic approximation is reasonably valid. Therefore,
when t > τ � 10 ms, we get:

m||(x, t)
n(x)

∼ g12n(x)
2�

[
kBT

m
Ω′′(x)

− 2ω2
axxΩ

′(x)
]
τ2(t− t0)2

4!
(54)

(the parameter t0 includes the accumulated effect of
the retardation of the spin current j for small time).



J.N. Fuchs et al.: Large amplitude spin waves in ultra-cold gases 67

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
||(x

T
,p

)
t=10 ms

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
⊥

,1
(x

T
,p

)

t=10 ms

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
||(x

T
,p

)

t=40 ms

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
⊥

,1
(x

T
,p

)

t=40 ms

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
||(x

T
,p

)

t=85 ms

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
⊥

,1
(x

T
,p

)

t=85 ms

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
||(x

T
,p

)

t=158 ms

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

p/p
T

M
⊥

,1
(x

T
,p

)

t=158 ms

Fig. 2. Longitudinal spin distribution M||(x = xT , p, t) and transverse spin distribution M⊥,1(x = xT , p, t) at position x = xT

for t = 10; 40; 85; 160 ms, where xT =
√

kBT/mω2
ax and pT =

√
mkBT . The local equilibrium spin distribution is plotted with

a dashed line.
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Fig. 3. Beginning of the internal conversion at the center of the trap. The numerical simulation is plotted with circles, the t4

result with a full line and the t2 result with a dashed line.

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

t (ms)

m
||(x

=
0,

t)
/n

(x
=

0)

Fig. 4. The numerical simulation is plotted with circles, the
t4 result with a full line and the (t− t0)

2 result with a dashed
line (t0 ∼ 2 ms here). Note the good agreement between the
(t−t0)

2 law and the kinetic equation in the range τ � 10 ms <
t � 40 ms.

The (t− t0)2 behavior is plotted in Figure 4 (the reason
why, after 40 ms, the numerical solution of the kinetic
equation is not well approximated by the (t − t0)2 law is
that the spin distribution gets very distorted, so that the
Leggett equations are no longer valid).

3.3 Decay of the phenomenon

Up to this point, we have studied mostly the initial part
of the phenomenon, when the amplitude of the spin wave
grows and the two species tend to separate from each
other; we now discuss its final part, when the spin oscilla-
tions decay and, eventually, the system returns to equilib-
rium. A first remark is that it is relatively easy to obtain
an order of magnitude of the time at which the transition
between the two regimes occurs, i.e. the time at which the
maximum of the separation takes places. For short times,
we have seen that this separation is an indirect result of
a differential precession of the transverse component of

the spin at different points along the Ox axis; the thermal
motion of the atoms then creates correlations between the
transverse orientation of the spins and the sign of the x
component of the velocities. But, for long times, the differ-
ential rotation of the spins will be so large that each sign
of this velocity will become associated with a widely open
fan of transverse orientation, with almost zero average;
clearly, the selective internal conversion effect will then
also average to almost zero. Let us consider the simple
situation of a homogeneous gas in a box of size L with a
linear gradient of external effective magnetic field Ω′. We
focus, for instance, on the situation at the center of the
box. At time t, atoms initially at x = v × t will cross this
point with a transverse orientation rotated by an angle of
the order of:

Ω′ × x× t = Ω′vt2. (55)

Therefore, at times greater than:

tm ∼ 1√
Ω′v

(56)

the transverse directions of the spins average out so that
the apparent segregation effect no longer takes place. In
the case of the trapped gas, Ω′ ∼ δΩ/L and v ∼ ωaxL
where L is the size of the cloud, and we obtain:

tm ∼ 2π√
δΩωax

· (57)

Typical values give tm ∼ 100 ms in accordance with the
results of the simulation. After this maximum, the system
tends to return to equilibrium during a time period which
we call the decay of the phenomenon.

Figure 1 shows that the decay of the longitudinal
and transverse spin polarizations are significantly differ-
ent. The longitudinal spin polarization m‖(x, t) returns to
equilibrium in two steps: it first quickly decreases from
its maximum value to almost zero in a time scale of the
order of 50 ms; it then goes to zero much more slowly,
on a time scale of the order of 200 ms. In order to un-
derstand this, we note in Figure 1 that, at the maximum
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of separation, the wave packets (or the clouds) associated
with each internal state overlap only little; the first step
is then easily interpreted as the free motion of the clouds
under the restoring force of the trap. It takes a quarter of
a period Tax/4 = π/2ωax = 36 ms to go from the max-
imum of oscillation to the center of the trap. Actually,
as soon as the two clouds start to overlap, they interact
through a repulsive mean field (g > 0), so that it takes
a little more time than a quarter of a period to reach
the situation where the two clouds overlap significantly3.
At this point, the subsequent evolution of the system can
be understood as the mutual diffusion of two gases4; this
happens ∼ 150 ms after the initial pulse and can again be
described by the Leggett equations (we checked on the p
distribution that the system is close to local equilibrium).
The relaxation time scale is then given by the spin diffu-
sion time tdiff ∼ L2/D (where L ∼ 2

√
kBT/mω2

ax is the
size of the cloud and D = kBTτ/m is the spin diffusion
constant). Using the same parameters as in the simula-
tion, we obtain tdiff ∼ 200 ms, in good agreement with
the numerical result.

We now discuss the transverse spin polarization
m⊥(x, t). As seen in Figure 1, it oscillates many times be-
fore going to zero. After ∼ 150 ms, when the Leggett equa-
tions are valid again, we know [6] that spin waves occur
in the hydrodynamic regime. The spectrum derived from
these equations predicts damped transverse spin waves [6].
The damping time is of the order of the spin diffusion time
tdiff ∼ 200 ms, which gives an order of magnitude for the
time it takes the transverse spin polarization to go from
its value at the maximum of separation to zero. This is
in agreement with the relaxation time obtained by nu-
merically solving the kinetic equation (Fig. 1). We finally
note that the frequency of the transverse spin waves is
essentially given by the external effective magnetic field
precession frequency δΩ/2π = 12 Hz.

3.4 “Ghost” wave packet and decoherence

We now come back to the time at which the separation is
maximum. In order to simplify the discussion, we consider
two clouds of atoms, one corresponding to state 1 and lo-
cated around x = d/2, the other corresponding to state 2
located around x = −d/2, where d is the distance be-
tween the center of the two clouds; we note δx the width of

3 That the two clouds interact mainly trough the mean field
and not trough (lateral) collisions is confirmed by the numer-
ical solution of the kinetic equation. Indeed, we checked that
removing the collision integral does not change the decay time
scale. The role of the collision integral is merely to damp re-
vivals of the longitudinal spin waves, which are observed when
the collision integral is discarded.

4 Actually, an instability of the transverse spin polarization
is possible when there is a strong longitudinal spin polarization
gradient (which is the case when the two clouds overlap again)
and a spin mean field. This is known as Castaing’s instabil-
ity [42]. In reference [43], we checked that it does not play a
role in the experiment done at JILA [1].

each of these wave packets, assuming that δx < d. In this
case, elementary quantum mechanics predicts that the lo-
cal transverse spin polarization vanishes everywhere (this
is because the local spin density corresponds to an oper-
ator which is local in ordinary space). Nevertheless, the
superposition of the two wave packets remains coherent
so that, rigorously speaking, the system is not equivalent
to a classical mixture of two gases, in opposition to what
we have assumed in the previous section.

One may wonder how this coherence translates in
terms of the Wigner distribution. The answer is well-
known: the presence of the coherence is contained in a so-
called “ghost” wave packet, which exists around the mid-
dle point between the two real wave packets (or clouds).
For spinless particles, it “carries interferences with it” [44],
and reconstructs them as soon as the real packets over-
lap again. For particles with spin, when the two sepa-
rated wave packets have opposite spin orientations, the
ghost wave packet centered at x = 0 appears only in the
non-diagonal spin matrix elements (transverse spin com-
ponents of the Wigner distribution). In both cases, the
wave packet rapidly oscillates as a function of momen-
tum p, taking positive and negative values, with an oscil-
lation period 2π�/d; the further apart the two clouds, the
faster the oscillation. On the other hand, for a statistical
mixture of the internal states, the ghost wave packet does
not exist. Such oscillating wave packets are well-known in
the context of macroscopic superpositions of states [44].

The next question is to what extent the ghost wave
packet is preserved by the time evolution of the kinetic
equation. Since the Wigner formalism in itself implies no
approximation (it is strictly equivalent to the use of opera-
tors), the question arises only because our kinetic equation
does not provide the exact quantum evolution: it was actu-
ally obtained from the operatorial (quantum) equation for
the single-particle density operator by truncating the gra-
dient expansion of the Wigner transform. In other words,
we made a semi-classical approximation. But, for the ghost
wave packet, the p oscillation period is 2π�/d while the
width of the wave packet is δx, so that the parameter
of the gradient expansion is d/δx, which may be larger
than 1: therefore, our kinetic equation does not necessar-
ily remain correct for this case; the semi-classical gradient
expansion may smooth the oscillations of the ghost wave
packet, and artificially introduce decoherence. Another re-
lated source of artificial decoherence5 might come from the
discretization of phase-space (necessary for the numerical
solution of the kinetic equation), which may introduce a
lattice spacing in momentum space larger than δp.

Up to this point, no real physical decoherence mech-
anism was included in our discussion: we have assumed
that the system is perfectly isolated. But this is not the
case in practice. In order to obtain an estimate of the

5 Concerning the second source of artificial decoherence, we
think that it is not a problem in our simulations. We checked
that, when removing the collision integral so that the kinetic
equation becomes reversible, the transverse spin polarization
disappears when the two wave packets do not overlap but reap-
pears when they mix again.
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physical decoherence time, we proceed by analogy with
a well-understood situation in quantum optics: a macro-
scopic superposition of two coherent states of the electro-
magnetic field in a cavity. In that case, it is known that
the coherence is lost as soon as one photon on average es-
capes the cavity and goes in the environment [45,46]. We
therefore assume here that for our trapped gas, a source
of decoherence comes from the fact that atoms can leave
the trap, because of 3-body collisions for example. The
time it takes one atom to leave the trap is 1/α3bn(0)2N
where α3b ∼ 4×10−29 cm6/s is the 3-body recombination
rate constant [47], N ∼ 106 is the total number of atoms
and n(0) � 2 × 1013 cm−3 is the density at the center of
the trap. This gives ∼ 0.1 ms as a rough upper bound to
the physical decoherence time, which is still much shorter
than the characteristic time scale of the spin state segre-
gation. Our conclusion is therefore that, when the wave
packets recombine, coherence is not likely to play a role
in these experiments; this justifies our discussion in the
preceding section.

4 Conclusion

We have derived a kinetic equation for a Boltzmann gas
with two internal levels using different methods. A first
conclusion which emerges from this work is that, for di-
lute gases at low temperature, several significantly dif-
ferent theoretical approaches lead essentially to the same
result. Here we have discussed the Yvon-Snider method,
with its peculiar way to close the BBGKY hierarchy, the
S matrix method which is very close to the spirit of the
original Boltzmann equation, as well as the popular mean
field method. In the latter case, the equivalence actually
holds only in the low temperature limit, when forward
scattering dominates over lateral scattering by a factor of
the order of λT /a. Whether or not it is possible to find ex-
perimental situations where the results of these theories
are significantly different, and can be tested experimen-
tally, is still an open question (for instance, whether or
not ISRE in lateral collisions may become dominant).

A second conclusion is that a correct treatment of the
correlations between internal variables and velocities at
each point of space may be important; this is illustrated
by figures contained in Figure 2. In other words, hydro-
dynamic equations are not always appropriate. What is
remarkable is that the effects of local field inhomogeneity
and velocities combine non-linearly to create this almost
complete separation of the two internal states; the effect
is not a segregation of states but rather an internal con-
version that depends on the direction of the velocity. It is
probably even more remarkable that this effect was discov-
ered experimentally, without any theoretical prediction as
a guide to the appropriate experimental conditions, and
appeared basically as a 100% effect from the beginning.
Clearly, ISRE is not a small quantum correction to the
effect of collisions, but may dominate the entire dynamics
of the quantum gas!

It would be interesting to extend the present work in
a few directions, for instance exploring the influence of a

temperature gradient on the spin current in hydrodynami-
cal situations, as predicted in [6]. For bosons, it would also
be important to understand better how spin waves evolve
progressively from the non-condensed regime, which we
have studied in this article, to the condensed low temper-
ature regime; the theory recently developed in [32] seems
to provide an appropriate tool for this purpose.

LKB is UMR 8552 du CNRS, de l’ENS et de l’Université P.
et M. Curie, Paris. Part of this work was made during a sum-
mer visit at the ECT* center of theoretical physics near Trento
(Italy), to which the authors are very grateful. They also ex-
press their gratitude to J. Williams for many stimulating dis-
cussions at ECT* and, later, by e-mail.

Appendix A: Interaction term of the S-matrix
Ansatz

A.1 Spin-independent interactions

In this appendix, we give the detailed calculation of the
Wigner transform of the collision term of the S matrix
Ansatz, equation (18). We will closely follow the notations
of a similar calculation done in the Appendix of refer-
ence [14], where the Wigner transform of the Yvon-Snider
Ansatz, equation (6) without internal levels and without
exchange, is obtained to first order in the gradient expan-
sion. We define the on-shell T matrix T by:

Ŝ = 1̂ − i2πT̂ (58)

and rewrite the core of the Ansatz in equation (18) as:

Ŝρ̂1(1)ρ̂1(2)Ŝ† − ρ̂1(1)ρ̂1(2) = −i2πT̂ ρ̂1(1)ρ̂1(2) + c.c.

+ (2π)2T̂ ρ̂1(1)ρ̂1(2)T̂ † (59)

where c.c. is the complex conjugate of the preceding term.
The first two terms of the preceding equation are linear
in the T matrix, the last is quadratic. The Wigner trans-
form F̂T of the linear in T matrix operator between curly
brackets in (18) is:

F̂T (R, r,P,p) = −i(2π)−5
�
−6

∫
d3K

∫
d3κ eiK·Reiκ·r

× 〈K+,k+|
1̂ + εP̂ex.√

2
T̂ ρ̂1(1)ρ̂1(2)

1̂ + εP̂ex.√
2

|K−,k−〉

+ c.c. (60)

where:

K± =
P
�

± K
2

; k± =
p
�
± k

2
· (61)
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ÎT (r1,p1) =
1

2i(2π)2 ∆t

∫
d3q

∫
d3r

∫
d3κ

∫
d3k′

1

∫
d3k′

2

∫
d3r′eiκ·rei(k′

2−k′
1)·r′δ(Ek+ − Ek′

1
)

×
[
δ(k′

2 − k−)T (k+,k′
1)ρ̂

(
r1 − r− r′

2
,p′′

1

)
f

(
r1 − r + r′

2
,p′′

2

)
+εδ(k′

2−k−)T (−k+, k′
1)ρ̂

(
r1 − r + r′

2
,p′′

2

)
ρ̂

(
r1 − r − r′

2
,p′′

1

)

+εδ(k′
2+k−)T (k+,k′

1)ρ̂

(
r1 − r − r′

2
,p′′

1

)
ρ̂

(
r1 − r + r′

2
,p′′

2

)
+ δ(k′

2 + k−)T (−k+,k′
1)f

(
r1 − r − r′

2
,p′′

1

)
ρ̂

(
r1 − r + r′

2
,p′′

2

)]

+ c.c. (65)

ÎT2(r1,p1) =
1

4π∆t

∫
d3q

∫
d3r

∫
d3κ

∫
d3k′

1

∫
d3k′

2

∫
d3r′eiκ·r ei(k′

2−k′
1)·r′δ(Ek+ − Ek′

1
)δ(Ek− − Ek′

2
)

×
[
T (k+,k′

1)T (k−,k′
2)

∗ρ̂
(
r1 − r − r′

2
,p′′

1

)
f

(
r1 − r + r′

2
,p′′

2

)

+ εT (−k+,k′
1)T (k−, k′

2)
∗ρ̂
(
r1 − r − r′

2
,p′′

2

)
ρ̂

(
r1 − r + r′

2
,p′′

1

)

+ εT (k+,k′
1)T (−k−, k′

2)
∗ρ̂
(
r1 − r − r′

2
,p′′

1

)
ρ̂

(
r1 − r + r′

2
,p′′

2

)

+ T (−k+,k′
1)T (−k−,k′

2)
∗f
(
r1 − r− r′

2
,p′′

1

)
ρ̂

(
r1 − r + r′

2
,p′′

2

)]
(67)

With two closure relations for relative wavevectors k1

and k2, the r.h.s. of (60) becomes equal to:

1
2i(2π)5�6

∫
d3K

∫
d3κ

∫
d3k1

∫
d3k2 eiK·Reiκ·r

×
(
T (k+,k1) + εT (−k+,k1)P̂S

)
δ(Ek+ − Ek1 )

× 〈K+,k1|ρ̂1(1)ρ̂1(2)|K−,k2〉
(
δ(k2 − k−)

+ εδ(k2 + k−)P̂S

)
+ c.c. (62)

where P̂S is the exchange operator in spin space. Now
using the inverse Wigner transform formula, we can in-
troduce into (62) the Wigner transform ρ̂(r,p) of ρ̂1 and
replace the matrix element of the product of ρ̂’s by:

�
6

∫
d3R′

∫
d3r′e−iK·R′

ei(k2−k1)·r′

× ρ̂

(
R′ +

r′

2
,
P + �k1 + �k2

2

)

× ρ̂

(
R′ − r′

2
,
P − �k1 − �k2

2

)
· (63)

When inserting the result into (62), a delta function ap-
pears:

∫
d3KeiK·(R−R′) = (2π)3δ(R − R′). (64)

Tracing over the orbital and the spin space of particle 2,
we finally obtain the following expression for the Wigner
transform ÎT (r1,p1) for the terms linear in T in the

Ansatz (18):

see equation (65) above

with notation (11) and with:

r = r1 − r2; k± =
p
�
± κ

2

p′′
1 = p1 −

q
2

+ �
k′

1 + k′
2

2
; p′′

2 = p1 −
q
2
− �

k′
1 + k′

2

2
·

(66)

The distribution f is the spin trace of ρ̂, see equation (10).
The same kind of calculation can be done for the term

quadratic in the T matrix in (18). It gives the Wigner
transform ÎT 2(r1,p1) as:

see equation (67) above.

As in references [14,26], we now assume that ρ̂(r,p) varies
slowly in space over microscopic distances and expand the
product of ρ̂ and f in (65) and (67) according to

ρ̂(r1,p′′
1 )f(r1,p′′

2 ) − r
2
· ∇r1 [ρ̂(r1,p′′

1 )f(r1,p′′
2)]

+
r′

2
· [ρ̂(r1,p′′

1)∇r1f(r1,p′′
2)

− (∇r1 ρ̂(r1,p′′
1)) f(r1,p′′

2) + ...] . (68)

The first term in (68) corresponds to the local term,
the two which follow to first order in gradients non-local
terms. A very similar equation exists for the product of
ρ̂’s in (65) and (67).
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ÎT (r1,p1) =
(2π)4

2i ∆t

∫
d3q

∫
d3k′

1 δ(Ek − Ek′
1
)
[
δ(k′

1 − k)T (k,k′
1)ρ̂

(
r1,p1 − �k+�k′

1

)
f
(
r1, p1 − �k−�k′

1

)

+ εδ(k′
1 − k)T (−k,k′

1)ρ̂
(
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1

)
ρ̂
(
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1

)
εδ(k′

1 + k)T (k,k′
1)ρ̂

(
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1

)
ρ̂
(
r1,p1 − �k−�k′

1
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1)f
(
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1

)
ρ̂
(
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1

) ]
+ c.c. (70)

ÎT2(r1, p1) =
(2π)4

2�

∫
d3q

∫
d3k′ δ(Ek − Ek′)

[
T (k,k′)T (k,k′)∗ρ̂

(
r1,p1 − �k + �k′) f

(
r1,p1 − �k− �k′)

+εT (−k,k′)T (k,k′)∗ρ̂
(
r1,p1 − �k− �k′) ρ̂

(
r1,p1 − �k + �k′)+εT (k,k′)T (−k,k′)∗ρ̂

(
r1,p1 − �k + �k′) ρ̂

(
r1,p1 − �k− �k′)

+ T (−k,k′)T (−k,k′)∗f
(
r1, p1 − �k + �k′) ρ̂

(
r1, p1 − �k− �k′) ] (72)

ÎW (r1,p1) = −
∫

d3q
q

m

{[
σT (k)ρ̂(r1,p1)f(r1,p2) +

ε

2

(
σex.

fwd.(k) [ρ̂(r1,p1), ρ̂(r1,p2)]+ + iτ ex.
fwd.(k) [ρ̂(r1,p1), ρ̂(r1,p2)]−

) ]

−
∫

d2k̂′
[
σk(k̂, k̂′)ρ̂(r1,p

′
1)f(r1,p

′
2) +

ε

2

(
σex.

k (k̂, k̂′)
[
ρ̂(r1, p

′
1), ρ̂(r1,p

′
2)
]
+

+ iτ ex.
k (k̂, k̂′)

[
ρ̂(r1,p

′
1), ρ̂(r1,p

′
2)
]
−

)]}
(76)

A.1.1 Local term

We now calculate the zeroth order in gradients. The fol-
lowing three integrals occur:

∫
d3r eiκ·r = (2π)3δ(κ);

∫
d3r′ ei(k′

2−k′
1)·r′ = (2π)3δ(k′

2 − k′
1)

∫
d3r′ e−i(k′

2+k′
1)·r′ = (2π)3δ (k′

2 + k′
1) . (69)

The linear in T matrix terms become:

see equation (70) above.

In the preceding equation, we note the appearance of
the square of delta functions of the energy δ(Ek)δ(k) ∝
[δ(Ek)]2. They are handled by the following well-known
simplification from scattering theory:

[δ(Ek)]2 =
∆t

2π�
δ(Ek) (71)

where ∆t is a time larger than the duration of a collision
(see Ref. [48], for example), which simplifies with the one
introduced in the S matrix Ansatz (18). The same manip-
ulations can be done with the quadratic in T matrix term,
they lead to:

see equation (72) above.

We will now use different properties of the T matrix.
In addition to the differential σk(k̂, k̂′) and total σT (k)

cross-sections defined in (12), we introduce, following ref-
erence [13], the following cross-sections:

T (−k,k) =
�

2k

i8π3m
(σex.

fwd.(k) − iτex.
fwd.(k))

T (−k′,k)T (k′,k)∗ =
�

4

4π4m2

(
σex.

k (k̂, k̂′) − iτex.
k

(
k̂, k̂′

))
.

(73)

Unitarity of the S matrix implies the optical theorem:

T (k,k)
2i

+ c.c. = ImT (k,k) = − �
2k

(2π)3m
σT (k) (74)

and the rotational invariance of the interaction Hamilto-
nian can be used to show that:

T (−k,−k′) = T (k,k′). (75)

Performing the integral over the length of wavevector k′
in (70) and (72) and using the previous properties of the
T matrix, we obtain the Wigner transform to zero order
of the S matrix Ansatz ÎW = ÎT + ÎT 2 :

see equation (76) above

with the notations (11). This local term is the LL “collision
integral” [13]. It contains terms linear in T matrix, usually
written on the l.h.s. of the kinetic equation, as well as
terms quadratic in T matrix.

The low-energy limit of the cross sections is obtained
from the low-energy expression of the T matrix (5):

σT (k) ∼ 4πa2 σk(k̂, k̂′) ∼ a2

σex.
fwd.(k) ∼ 4πa2 σex.

k (k̂, k̂′) ∼ a2

τex.
fwd.(k) ∼ −4πa/k τex.

k (k̂, k̂′) → 0
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(2π)3

2

∫
d3q ∇p ·

{
ReT (k,k) [ρ̂(r1,p1)∇rf(r1,p2) − f(r1,p2)∇rρ̂(r1, p1)]

+
ε

2
T (k,−k) [ρ̂(r1,p1)∇rρ̂(r1,p2) − ρ̂(r1,p2)∇rρ̂(r1,p1)] +

ε

2
T (k,−k)∗ [∇rρ̂(r1,p2) ρ̂(r1,p1) −∇rρ̂(r1, p1) ρ̂(r1,p2)]

}

(79)

when k → 0, see reference [13]. When introduced into (76),
the collision integral of equation (22) is obtained, as well
as the spin mean field contained in the commutator in
equation (20). Other mean field terms (contained in the
anticommutator) appear to first order of the gradient ex-
pansion.

A.1.2 First order terms

We retain only first order terms that are in addition linear
in T matrix.

r gradients

The first-order terms introduce the gradient of a delta
function:

∫
d3r r eiκ·r = −i(2π)3∇κδ(κ)

which implies taking the derivative with respect to κ of
the function under the integral. We obtain:

(2π)3

2

∫
d3q

{
ReT (k,k) ∇p · ∇r [ρ̂(r1,p1)f(r1,p2)]

−∇p [ReT (k,k)] · ∇r [ρ̂(r1,p1)f(r1,p2)]

+
ε

2
T (k,k) ∇p · ∇r [ρ̂(r1,p1)ρ̂(r1,p2)]

− ε

2
∇p [T (k,k)] · ∇r [ρ̂(r1,p1)ρ̂(r1,p2)]

+
ε

2
T (k,k)∗ ∇p · ∇r [ρ̂(r1,p2)ρ̂(r1,p1)]

− ε

2
∇p [T (k,k)∗] · ∇r [ρ̂(r1,p2)ρ̂(r1,p1)]

}
· (77)

r’ gradients

The following integrals occur:
∫

d3r′ ei(k′
2−k′

1)·r′r′ = −i(2π)3∇k′
1
δ(k′

1 − k′
2)

∫
d3r′ e−i(k′

2+k′
1)·r′r′ = −i(2π)3∇k′

1
δ(k′

2 + k′
1) (78)

so that we obtain:

see equation (79) above.

The expression of the T matrix to lowest order in the
scattering length (see Eq. (5))

(2π)3T (k,k) � g

is independent of k. Using the preceding expression in (77)
and (79), we obtain the following first order term:

1
2
[
∇pρ̂(r1,p1), ·∇r

(
gn(r1)1̂ + ε gn̂(r1)

)]
+

This is the mean field term appearing in the anticommu-
tator in the kinetic equation (20).

A.2 Spin-dependent interactions (forward
scattering)

In this appendix, we show how to obtain the full mean
field in the case of spin-dependent interactions, using the
S-matrix Ansatz. We will limit ourselves to collisions at
low-energy, using the T matrix only at lowest order in the
scattering lengths (Eq. (23)):

〈α ;β| T̂k |γ ; δ〉 = δα,γδβ,δ

g
(d)
αβ

(2π)3

+ (1 − δα,β)δα,δδβ,γ

g
(t)
αβ

(2π)3
(80)

where g(d)
αα ≡ gαα. In this limit the T matrix elements are

real.
As we are interested in mean field terms, we only keep

terms linear in the T matrix in the r.h.s. of the S matrix
Ansatz, equation (18):

2π
i∆t

Tr2

{
1̂ + εP̂ex.√

2

[
T̂ ρ̂1(1) ρ̂1(2)

− ρ̂1(1) ρ̂1(2) T̂
]
1̂ + εP̂ex.√

2

}
(81)

where we introduced the T matrix (the on-shell T matrix),
whose definition is given in Appendix A.1, equation (58).
Using the properties of the trace on particle 2 and the fact
that the exchange operator commutes with the T matrix,
we can rewrite the preceding equation in the form of a
commutator:

1
i�

[
2π�

∆t
Tr2

{(
1̂ + εP̂ex.

)
T̂ ρ̂1(2)

}
, ρ̂1(1)

]

−
. (82)

It seems therefore natural that the first operator in the
commutator should play the role of an effective single-
particle Hamiltonian.



74 The European Physical Journal D

2π�

(2π)3∆t

∫
d3p2

∫
d3p3 δ(E(p1−p2)/2 − E(p3−p4)/2)

×
∑

β

{
g
(d)
αβ 〈p3, α|ρ̂1|p′

1, α
′〉〈p4, β|ρ̂1|p2, β〉 + (1 − δα,β)g

(t)
αβ〈p3, β|ρ̂1|p′

1, α
′〉〈p4, α|ρ̂1|p2, β〉

+ εg
(d)
αβ 〈p3, β|ρ̂1|p′

1, α
′〉〈p4, α|ρ̂1|p2, β〉 + ε(1 − δα,β)g

(t)
αβ〈p3, α|ρ̂1|p′

1, α
′〉〈p4, β|ρ̂1|p2, β〉

}
(85)

We now consider a general matrix element of the pre-
ceding commutator. To simplify the notation, we only
write the first term of the commutator:

〈1 : p1, α|
2π�

∆t
Tr2

{(
1̂ + εP̂ex.

)
T̂ ρ̂1(2)

}

× ρ̂1(1)|1 : p′
1, α

′〉. (83)

We calculate this matrix element by introducing three clo-
sure relations of the form:

1̂ =
∫

d3p
∑

β

|p, β〉〈p, β| (84)

and by using the expression (80) of the T matrix. We
obtain:

see equation (85) above

where p4 = p1 + p2 − p3. By defining the three following
coupling constants:

gαα = g(d)
αα; gαβ = g

(d)
αβ + εg

(t)
α,β if α = β (86)

we can rewrite equation (85) as:

2π�

∆t

∫
d3p2

∫
d3p3 δ(E(p1−p2)/2 − E(p3−p4)/2)

×
∑

β

gαβ

(2π)3

{
〈p4, β|ρ̂1|p2, β〉〈p3, α|ρ̂1|p′

1, α
′〉

+ ε〈p4, α|ρ̂1|p2, β〉〈p3, β|ρ̂1|p′
1, α

′〉
}
· (87)

We therefore see that, for both statistics (bosonic or
fermionic), only three coupling constants (g11, g22 and g12)
are involved.

Now, taking the Wigner transform of the operator (82)
and expanding in gradients (see Appendix A.1) introduces
another delta function of energy conservation, which is
present at each order in gradients. This allows to use the
“δ(E)2” simplification (Eq. (71) in Appendix A.1) to make
the ∆t disappear. The net result is that:

2π�

∆t
δ(E(p1−p2)/2 − E(p3−p4)/2) (88)

gets replaced by 1. Formally the matrix element of equa-
tion (83) becomes:

∫
d3p2

∫
d3p3

∑
β

gαβ

(2π)3

×
{
〈p4, β|ρ̂1|p2, β〉〈p3, α|ρ̂1|p′

1, α
′〉

+ ε〈p4, α|ρ̂1|p2, β〉〈p3, β|ρ̂1|p′
1, α

′〉
}
. (89)

This result can be rewritten:

〈1 : p1, α|V̂ mf(1)ρ̂1(1)|1 : p′
1, α

′〉 (90)

where:

V mf
αβ (r) = δαβ

∑
γ=1,2

gαγ〈r, γ|ρ̂1|r, γ〉 + εgαβ〈r, α|ρ̂1|r, β〉

(91)
is the mean field potential. Therefore, equation (82) can
be written formally:

1
i�

[
V̂ mf(1), ρ̂1(1)

]
−
. (92)

This equation is valid provided it is used to compute
the Wigner transform and do a subsequent gradient
expansion.

In the body of the article, we define the effective single-
particle Hamiltonian Û which is the sum of the external
potential V̂ ext and of the mean field potential V̂ mf . The
operatorial kinetic equation is now:

dρ̂1

dt
+ (i�)−1

[
ρ̂1, Ĥ1 + V̂ mf

]
−

= 0. (93)

The kinetic equation is then derived following the pro-
cedure of Appendix A.1 (Wigner transform and gradient
expansion up to first order); the result is:

∂tρ̂(r,p) +
p
m

· ∇rρ̂(r,p) +
1
i�

[
ρ̂ (r,p) , Û(r)

]
−

− 1
2

[
∇pρ̂ (r,p) , ·∇rÛ(r)

]
+

= 0 (94)

which is equal to the l.h.s. of (25).
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